LABORATORIUM AKUSTYKI

ĆWICZENIE NR 1 Interferencja i dyfrakcja fal akustycznych

1.Cel ćwiczenia

Celem ćwiczenia jest doświadczalne poznanie zjawisk falowych: interferencji i ugięcia fal akustycznych na strukturach.

2.Układ pomiarowy

1 - generator, 2 - wzmacniacz mocy -, 3 - źródło fali płaskiej, 4 - stolik obrotowy,
5 - badana struktura w odgrodzie, 6 - mikrofon pomiarowy, 7 - miernik poziomu dźwięku, 8 - komputer PC + program Chak.

3. Zadania laboratoryjne

- 3.1. Zapoznać się z układem pomiarowym wg podanego schematu blokowego.
- 3.2. Zmierzyć wymiary badanej struktury i dobrać częstotliwości sygnału dla parametru struktury $d/\lambda = 1/2$, 1, 3/2 i 2.
- 3.3. Zmierzyć charakterystykę kierunkowości promieniowania badanej struktury dla podanych wartości parametru struktury d/λ .
- 3.4. Dla podanych wartości parametru struktury d/λ wyznaczyć kąty padania fali płaskiej na przegrodę, dla których układ dwóch jednakowych otworów jest dipolem akustycznym. Zmierzyć charakterystyki kierunkowości promieniowania dipola dla podanych wartości parametru struktury d/λ .

4. Zagadnienia do przygotowania

- 4.1. Istota ruchu falowego.
- 4.2. Promieniowanie akustycznych źródeł fali płaskiej i kulistej.
- 4.3. Interferencja i dyfrakcja fal akustycznych.

Literatura

- [1] A. Dobrucki, Podstawy akustyki. Skrypt PWr., Wrocław 1987.
- [2] A. Januszajtis, Fizyka dla Politechnik, Tom III Fale, §6 i §8. PWN W-wa 1991.
- [3] Z. Żyszkowski, Miernictwo akustyczne. WNT, W-wa 1987, rozdz. 9.12.
- [4] J.M. Buczek, Praca dyplomowa "Stanowisko do badania i demonstracji zjawisk falowych". PWr.,1988r.

CZĘŚĆ I. UKŁAD n-KOHERENTNYCH ŹRÓDEŁ DŹWIĘKU

1. Moc akustyczna pojedynczego źródła fali kulistej

1.1. Potencjał, ciśnienie i prędkość akustyczna

W celu wyznaczenia mocy akustycznej pojedynczego źródła fali kulistej skorzystamy z rozwiązania równania falowego we współrzędnych sferycznych [1]. Rozwiązanie to ma postać:

(1)
$$\Phi(\vec{r},t) = \frac{A}{r} e^{j(\omega t - kr)},$$

gdzie zaburzenie ośrodka Φ jest wielkością skalarną zwaną potencjałem akustycznym (lub potencjałem prędkości), A współczynnikiem określonym przez wydajność źródła Q [m³/s], r odległością od źródła, ω pulsacją z jaką źródło promieniuje, $\omega = kc$, k liczbą falową, $k = 2\pi/\lambda$, λ długością fali, $\lambda = c/f$, c prędkością fali w ośrodku w którym się ona rozchodzi.

Wektor \vec{r} jest wektorem wodzącym, który określa położenie punktu w przestrzeni przy ustalonym punkcie 0; w układzie współrzędnych sferycznych, $\vec{r} = (r, \theta, \varphi)$.

Potencjał akustyczny jest zdefiniowany przez prędkość akustyczną i ciśnienie akustyczne, które wytwarza w ośrodku rozchodząca się fala:

(2)
$$\begin{cases} \vec{v}(\vec{r},t) = -grad\Phi(\vec{r},t), \\ p(\vec{r},t) = \rho \frac{\partial}{\partial t} \Phi(\vec{r},t), \end{cases},$$

które, w przestrzeni 3D i ośrodku liniowym bez przepływu, są związane równaniem Eulera (1756r.)

(3)
$$gradp(\vec{r},t) = -\rho \frac{\partial \vec{v}(\vec{r},t)}{\partial t},$$

gdzie ρ jest gęstością ośrodka w którym rozchodzi się fala akustyczna.

Istnienie potencjału akustycznego wynika z faktu, że w obszarze wypełnionym ośrodkiem doskonale płynnym i nie zawierającym innych źródeł pole, które wytwarza propagująca się fala (zaburzenie) jest bezwirowe ($rot\vec{v} = 0$).

<u>Uwaga 1</u>

Ośrodek w którym propaguje się fala dźwiękowa jest zwykle mieszaniną gazów, której głównymi składnikami są molekuły azotu oraz tlenu. W procesie propagacji dźwięku istotną rolę odgrywa również para wodna, chociaż w powietrzu jest jej bardzo mało. Tworzące gaz cząsteczki, znajdujące się w nieustannym, bezładnym ruchu, są praktycznie niezależne od siebie i zajmują zawsze całą dostępną im przestrzeń, niezależnie od jej wielkości.

Zgodnie z prawem Avogadra-Ampere'a: w jednakowych warunkach jednakowe objętości różnych gazów zawierają zawsze jednakową liczbę cząsteczek; jest ona równa liczbie Avogadra $N_A = 6.02 \cdot 10^{23}$ /mol. Oznacza to, że w objętości 22.4 dm³ gazu, w temperaturze 0°C i pod ciśnieniem 1 atm (1013.25 hPa) znajduje się 6.02 \cdot 10^{23} atomów

(1 mol, tj. 18 g, wody lub lodu zawiera tyle samo atomów), natomiast w objętości 1 cm³, temperaturze 25°C i ciśnieniu 1000 hPa znajduje się $\Box r. 2.43 \ 10^{19}$ cząsteczek.

<u>Uwaga 2</u>

Molekuły gazów, które tworzą powietrze, również znajdują się w ciągłym, bezładnym ruchu. Można przyjąć, że średnia prędkość tego ruchu jest rzędu 500 m/s, a średnia odległość między molekułami wynosi \Box r. $3 \cdot 10^{-7}$ m, przy czym średnica molekuł jest \Box r. 1000 razy mniejsza. Średnia liczba zderzeń molekuł w ciągu 1 s jest zatem rzędu $2 \cdot 10^{9}$. Na ten chaotyczny ruch molekuł nakłada się wymuszony i uporządkowany ruch, który jest **falą** akustyczną (dźwiękową). Podczas rozchodzenia się fali dźwiękowej w ośrodku jej energia akustyczna zamienia się na ciepło w wyniku pochłaniania klasycznego i molekularnego oraz rozpraszania na turbulencjach. Pochłanianie klasyczne jest wynikiem zjawiska lepkości i przewodnictwa cieplnego, natomiast pochłanianie molekularne jest związane z rotacją molekuł oraz drganiami tworzących je atomów. Wzbudzenie ruchu "wewnętrznego" molekuł odbywa się kosztem energii ruchu translacyjnego, tj. uporządkowanego ruchu wymuszonego przez falę dźwiękową. W zakresie częstotliwości do 10 kHz największą rolę odgrywa pochłanianie molekularne cząsteczek azotu i tlenu.

Fala kulista charakteryzuje się tym, że:

- rozchodzi się jednakowo we wszystkich kierunkach, tzn., że powierzchnie izoamplitudowe oraz izofazowe (tj. powierzchnie jednakowej amplitudy i jednakowej fazy) są identyczne i są sferami,
- amplituda potencjału akustycznego jest odwrotnie proporcjonalna do odległości *r* od źródła,
- ruch ośrodka odbywa się tylko w kierunku radialnym, tzn., że kierunki wektorów prędkości akustycznej pokrywają się z promieniami wyprowadzonymi ze źródła.

Wobec tego rozkład pola akustycznego wytwarzanego przez falę kulistą nie ulegnie zmianie, jeżeli w środku umieścimy jako źródło kulę pulsującą o promieniu a, tj. kulę drgająca w ten sposób, że jej promień zmienia się okresowo z częstością ω i jednakowo we wszystkich kierunkach.

Dalej zakładamy, że prędkość objętościowa kuli pulsującej jest, w zapisie zespolonym, równa:

$$v_o = Q e^{j\omega t}$$
,

gdzie Q jest wydajnością źródła w [m³/s]. Zatem na powierzchni kuli musi zachodzić relacja:

$$v_o = 4\pi a^2 \left(-\frac{\partial \Phi(\overline{r},t)}{\partial r} \right)_{r=a}$$

Różniczkując (1) otrzymujemy:

$$v_o = -4\pi a^2 \left(-\frac{A}{r^2} e^{j(\omega t - kr)} + \frac{A}{r} (-jk) e^{j(\omega t - kr)} \right) \Big|_{r=a} = 4\pi A (1 + jka) e^{j(\omega t - ka)} = Q e^{j\omega t}.$$

Stąd

(4)
$$A = \frac{Qe^{jka}}{4\pi(1+jka)}$$

i po podstawieniu do (1) potencjał akustyczny fali kulistej dla kuli pulsującej jest równy:

(5)
$$\Phi(\vec{r},t) = \frac{Qe^{jka}}{4\pi r(1+jka)}e^{j(\omega t-kr)}.$$

Dla źródła punktowego, gdy $a \rightarrow 0$

$$A = \lim_{a \to 0} \frac{Q e^{jka}}{4\pi (1+jka)} = \frac{Q}{4\pi}.$$

Ciśnienie akustyczne w polu fali kulistej, na podstawie (1) i (2), ma postać:

(6)
$$p(\vec{r},t) = \rho \frac{\partial \Phi(\vec{r},t)}{\partial t} = j\omega\rho \frac{A}{r} e^{j(\omega t - kr)} = p(\vec{r}) e^{j\omega t},$$

przy czym moduł i faza zespolonej amplitudy ciśnienia akustycznego $p(\vec{r}) = |p(\vec{r})|e^{j\varphi_p(\vec{r})}$ są, wg (4) i (6), równe:

(6a)
$$\begin{cases} \left| p\left(\vec{r}\right) \right| = Z_o \frac{kQ}{4\pi r \sqrt{1 + (ka)^2}}, \\ \phi_p\left(\vec{r}\right) = \frac{\pi}{2} + ka - kr - arctg(ka), \end{cases}$$

gdzie Z_o jest impedancją falową ośrodka, $Z_o = \rho c$.

W polu fali kulistej $grad\Phi(\vec{r},t) = \frac{\partial}{\partial r} \Phi(\vec{r},t)$, zatem na podstawie (1) i (2) oraz korzystając ze wzoru pochodną iloczynu dwóch funkcji

$$\begin{cases} f(x) = g(x)h(x), \\ f'(x) = g'(x)h(x) + g(x)h'(x), \end{cases}$$

wyznaczamy prędkość akustyczną:

(7)
$$\vec{v}(\vec{r},t) = -\frac{\partial \Phi(\vec{r},t)}{\partial r} = \frac{A}{r^2} (1+jkr) e^{j(\omega t-kr)} = \vec{v}(\vec{r}) e^{j\omega t},$$

gdzie moduł i faza zespolonej amplitudy prędkości akustycznej $\vec{v}(\vec{r}) = |\vec{v}(\vec{r})| e^{j\varphi_v(\vec{r})}$ są, wg (4) i (7), równe:

(7a)
$$\begin{cases} |\vec{v}(\vec{r})| = \frac{Q}{4\pi r^2} \sqrt{\frac{1+(kr)^2}{1+(ka)^2}}, \\ \varphi_v(\vec{r}) = ka - arctg(ka) - kr + arctg(kr). \end{cases}$$

Łatwo sprawdzić, że prędkość akustyczna wg (7) na powierzchni kuli wynosi:

$$v(\vec{r},t)\Big|_{r=a} = \frac{Q}{4\pi a^2} e^{j\omega t} = \frac{v_o}{4\pi a^2}.$$

Znając ciśnienie i prędkość akustyczną możemy już wyznaczyć czynną moc akustyczną, którą pulsująca kula wypromieniowuje do ośrodka.

1.2. Moc akustyczna współczynnik kierunkowości promieniowania źródła

Czynna moc akustyczna źródła jaką źródło oddaje ośrodkowi jest to całka z uśrednionego w czasie natężenia akustycznego I po dowolnej, zamkniętej powierzchni S otaczającej źródło, czyli czynna moc akustyczna jest to całkowity strumień energii akustycznej wychodzący w jednostce czasu na zewnątrz powierzchni, co można zapisać w postaci:

(8)
$$W = \operatorname{Re}\left\{\int_{S} \vec{I}_{n}(\vec{r}) dS\right\} = \frac{1}{2} \operatorname{Re}\left\{\int_{S} p(\vec{r}) \vec{v}_{n}^{*}(\vec{r}) dS\right\},$$

gdzie indeks *n* oznacza składową normalną do powierzchni *S* wektora natężenia $I(\vec{r})$ i prędkości $\vec{v}(\vec{r})$ akustycznej, natomiast * oznacza wielkość zespoloną sprzężoną.

Zespolony, uśredniony w czasie wektor natężenia akustycznego jest zdefiniowany następująco:

(9)
$$\vec{I}(\vec{r}) = \frac{1}{2T} \int_{0}^{T} p(\vec{r},t) \vec{v}^{*}(\vec{r},t) dt = \frac{1}{2} p(\vec{r}) \vec{v}^{*}(\vec{r}),$$

Z równania Eulera (3) w przestrzeni 3D wynika związek między prędkością i ciśnieniem fali akustycznej:

$$\vec{v}(\vec{r},t) = -\frac{1}{\rho} \int gradp(\vec{r},t) dt = -\frac{1}{j\omega\rho} \cdot gradp(\vec{r},t),$$

Wykorzystując wzory rachunkowe dla gradientu ciśnienia ak. $p(\vec{r},t) = |p(\vec{r})|e^{j(\omega t + \varphi_p(\vec{r}))}$

$$\begin{cases} grad(cU) = cgradU, \\ grad(U_1U_2) = U_1gradU_2 + U_2gradU_1 \end{cases}$$

otrzymamy:

$$gradp(\vec{r},t) = e^{j\omega t} grad(p(\vec{r}))e^{j\varphi_p(\vec{r})} = [grad(p(\vec{r})) + j(p(\vec{r}))grad\varphi_p(\vec{r})]e^{j(\omega t + \varphi_p(\vec{r}))}$$

Zatem prędkość akustyczna przyjmie postać:

$$\vec{v}(\vec{r},t) = \frac{1}{\omega \rho} \left[-|p(\vec{r})| grad \varphi_p(\vec{r}) + jgrad |p(\vec{r})| \right] e^{j\varphi_p(\vec{r})} e^{j\omega t}$$

Podstawiając zespolone amplitudy ciśnienia i prędkości akustycznej do (9) otrzymamy:

$$\vec{I}(\vec{r}) = \frac{1}{2} |p(\vec{r})| e^{j\varphi_p(\vec{r})} \frac{1}{\omega \rho} \left[-|p(\vec{r})| grad\varphi_p(\vec{r}) - jgrad |p(\vec{r})| \right] e^{-j\varphi_p(\vec{r})} = \frac{|p(\vec{r})|^2}{2kZ_o} \left[-grad\varphi_p(\vec{r}) - j\frac{1}{|p(\vec{r})|} grad |p(\vec{r})| \right].$$

Korzystając ze wzoru:

$$gradf(U) = \frac{\partial f}{\partial U}gradU$$
,

zespolony wektor natężenia akustycznego możemy ostatecznie zapisać w postaci:

(10)
$$\vec{I}(\vec{r}) = -\frac{|p(\vec{r})|^2}{2kZ_o} \left[grad\varphi_p(\vec{r}) + jgrad(\ln|p(\vec{r})|) \right]$$

Jak można zauważyć wzór (10) pozwala wyznaczyć zespolony wektor natężenia akustycznego jedynie na podstawie znajomości modułu i fazy ciśnienia akustycznego. Wzór ten jest słuszny dla stanu ustalonego pola akustycznego dowolnego typu fali, nie tylko kulistej.

Po podstawieniu (10) do (8) i uwzględniając, że $p_{rms}^2(\vec{r}) = \frac{1}{2} |p(\vec{r})|^2$ otrzymamy ogólną zależność, która pozwala wyznaczyć czynną moc akustyczną źródła dowolnego typu:

(11)
$$W = \operatorname{Re}\left\{\int_{S} \vec{I}_{n}(\vec{r}) dS\right\} = -\frac{1}{kZ_{o}} \int_{S} p_{rms}^{2}(\vec{r}) grad_{n} \varphi_{p}(\vec{r}) dS.$$

Zatem do wyznaczenia czynnej mocy akustycznej źródła wg (11) wystarczy tylko znajomość wartości skutecznej ciśnienia akustycznego i jego gradientu fazy w kierunku prostopadłym do powierzchni *S*.

Jeżeli powierzchnią S otaczającą źródło jest sfera, $S = 4\pi r^2$, wówczas element powierzchni dS, w przypadku braku symetrii osiowej źródła, jest równy: $dS = r^2 \sin\theta d\theta d\varphi$, zatem

(12)
$$W = -\frac{1}{kZ_o} \int_0^{\pi} \int_0^{2\pi} p_{rms}^2(\vec{r}) grad_n \varphi_p(\vec{r}) r^2 \sin\theta d\theta d\varphi.$$

Gradient fazy ciśnienia akustycznego w polu fali kulistej jest równy $grad_n\phi_p(\vec{r}) = \frac{\partial}{\partial r}\phi_p(\vec{r})$ i wg (6a) wynosi - k, tak więc moc akustyczna kuli pulsującej jest równa:

(13)
$$W = \frac{p_{rms}^2(\vec{r})}{Z_o} 4\pi r^2 = Z_o \frac{(kQ)^2}{8\pi (1 + (ka)^2)}, \text{ [Watt]}$$

Dla źródła punktowego, gdy $a \rightarrow 0$

(13a)
$$W_o = \lim_{a \to 0} Z_o \frac{(kQ)^2}{8\pi (1 + (ka)^2)} = Z_o \frac{(kQ)^2}{8\pi}.$$

Jeżeli rozkład amplitudy prędkości na powierzchni kuli pulsującej v(a) nie jest równomierny, tj. kula drga w ten sposób, że promień zmienia się okresowo ale nie jednakowo we wszystkich kierunkach, wówczas wygodnie jest wprowadzić współczynnik kierunkowości promieniowania źródła Q_k w punkcie pola akustycznego $\vec{r} = (r, \theta, \varphi)$. Współczynnik ten dla pola dalekiego, tj. dla $kr \ge 2$ ($r \ge 0.32\lambda$) jest zdefiniowany następująco:

(14)
$$Q_k(\theta,\varphi) = \frac{|p(r,\theta,\varphi)|^2}{\frac{1}{S} \int_{S} |p(r,\theta,\varphi)|^2 dS} \bigg|_{r=cons}$$

Przyjęcie takiej definicji nie wymaga określania osi głównej dla danego źródła, co bywa częstokroć kłopotliwe, szczególnie w przypadku źródeł, które nie mają symetrii osiowej.

Uwzględniając (14) moc akustyczną wg (11), dla $\frac{\partial}{\partial r}\phi_p(\vec{r}) = -k$, możemy zapisać w postaci:

(15)
$$W = \frac{1}{Z_o} \int_{S} p_{rms}^2(r,\theta,\varphi) dS = \frac{S}{Z_o} \cdot \frac{p_{rms}^2(r,\theta,\varphi)}{Q_k(\theta,\varphi)}$$

Stąd wartość skuteczna (rms) ciśnienia akustycznego generowana przez źródło o mocy akustycznej *W* jest w punkcie $\vec{r} = (r, \theta, \phi)$ pola dalekiego źródła, tj. dla $kr \ge 2$, równa:

(16)
$$p_{rms}^{2}(r,\theta,\varphi) = Z_{o} \frac{WQ_{k}(\theta,\varphi)}{4\pi r^{2}}$$

<u>Uwagi:</u>

- 1. Jeżeli amplituda prędkości objętościowej źródła Q (wydajność) i jego promień a nie zależą od częstotliwości, to dla ka << 1 moc akustyczna kuli pulsującej wg (13) jest proporcjonalna do kwadratu częstotliwości: $W \approx Z_o \frac{(kQ)^2}{8\pi} \sim f^2$.
- 2. Dla ka >> 1 (a/ λ >> 0.16) moc akustyczna kuli pulsującej wg (13) jest stała i nie zależy od częstotliwości: W $\approx Z_o \frac{Q^2}{8\pi a^2} = const.$
- 3. Zależność (16) jest słuszna również dla źródła punktowego (gdy a $\rightarrow 0$), przy czym źródło punktowe, którego współczynnik kierunkowości promieniowania $Q_k(\theta, \varphi) \neq 1$, jest nazywane źródłem quasi-punktowym.
- 4. Poziom mocy akustycznej wg (15) jest równy:

$$L_{W} = 10 \lg \frac{W}{W_{o}} = 10 \lg \left(\frac{p_{rms}}{p_{o}}\right)^{2} + 10 \lg \frac{S}{S_{o}} + 10 \lg \left(\frac{p_{o}^{2}S_{o}}{z_{o}W_{o}}\right) = L_{p} + L_{s} - 0.16, \text{ dB}$$

względem wartości odniesienia: $W_o = 10^{-12}$ [watt], $p_o = 2 \cdot 10^{-5}$ [Pa], $Z_o = 415$ [Pa·s/m], $S_o = 1$ [m²].

2. Oddziaływanie między źródłami fali kulistej

Na wstępie rozważymy dwie kule 1 i 2 pulsujące z tą samą częstotliwością, ale różnymi fazami początkowymi. Źródła te są oddalone o odległość d_{12} i mają promień a_i , i = 1, 2. Moduł i faza zespolonych amplitud ciśnienia akustycznego $p_i(\vec{r},t) = p_i(\vec{r})e^{j\omega t}$ i prędkości akustycznej $\vec{v}_i(\vec{r},t) = \vec{v}_i(\vec{r})e^{j\omega t}$, i = 1, 2, każdego źródła pracującego oddzielnie są, wg (6a) i (7a), równe:

(17)
$$\begin{cases} \left| p_{i}(\vec{r_{i}}) \right| = kZ_{o} \frac{Q_{oi}}{4\pi r_{i} \sqrt{1 + (ka_{i})^{2}}}, \\ \varphi_{p,i}(\vec{r_{i}}) = \frac{\pi}{2} + ka - kr_{i} - arctg(ka_{i}) + \varphi_{i}. \end{cases} \end{cases}$$

(18)
$$\begin{cases} \left| \vec{v}_{i}(\vec{r}_{i}) \right| = \frac{Q_{oi}}{4\pi r_{i}^{2}} \sqrt{\frac{1 + (kr_{i})^{2}}{1 + (ka_{i})^{2}}}, \\ \varphi_{v,i}(\vec{r}_{i}) = ka_{i} - arctg(ka_{i}) - kr_{i} + arctg(kr_{i}) + \varphi_{i}. \end{cases}$$

przy czym φ_i jest fazą początkową *i*-tego źródła; pozostałe oznaczenia jak we wzorach (6a) i (7a).

Gdy źródła promieniują jednocześnie, to na skutek promieniowania źródła 2, źródło 1 (oddalone o d_{12}) musi wypromieniować dodatkową moc akustyczną dla pokonania ciśnienia wywieranego na jego powierzchni przez źródło 2. Ta dodatkowa moc akustyczna jest wg (8) równa:

$$W_{12} = \frac{1}{2} \operatorname{Re}\left\{\int_{S} p_2(d_{12}) \vec{v}_{n,1}^*(a_1) dS\right\} = 4\pi a_1^2 \frac{1}{2} \operatorname{Re}\left\{p_2(d_{12}) \vec{v}_1^*(a_1)\right\}.$$

Po podstawieniu (17) i (18), dla $a_i \rightarrow 0$, otrzymamy:

$$W_{12} = \frac{1}{2} k Z_o \frac{Q_{o1} Q_{o2}}{4 \pi d_{12}} \cos \left(\frac{\pi}{2} - (k d_{12} - \varphi_1 + \varphi_2) \right).$$

Uwzględniając, że $\cos\left(\frac{\pi}{2} - \alpha\right) = \sin \alpha$ oraz zależność (13a), dodatkowa moc akustyczna wypromieniowana przez źródło 1 na skutek działania źródła 2 jest równa:

(19)
$$W_{12} = \sqrt{W_{o1}W_{o2}} \frac{\sin(kd_{12} - \varphi_1 + \varphi_2)}{kd_{12}}.$$

Całkowita moc akustyczna wypromieniowana przez źródło 1 jest zatem sumą:

(20)
$$W_1 = W_{o1} + W_{12} = W_{o1} + \sqrt{W_{o1}W_{o2}} \frac{\sin(kd_{12} - \varphi_1 + \varphi_2)}{kd_{12}}.$$

Gdy *n* źródeł punktowych pracuje jednocześnie, wówczas moc akustyczna wypromieniowana przez **źródło 1**, w wyniku oddziaływania z pozostałymi *n*-1 źródłami, jest równa:

$$W_1 = W_{o1} + \sum_{j=2}^n W_{1j}$$
.

Zatem całkowita moc akustyczna promieniowana przez układ *n źródeł* jest sumą:

$$W = \sum_{i=1}^{n} W_{i} = \sum_{i=1}^{n} W_{oi} + \sum_{i=1}^{n} \sum_{\substack{j=1\\i\neq j}}^{n} \sqrt{W_{oi}W_{oj}} \frac{\sin(kd_{ij} + \varphi_{j} - \varphi_{i})}{kd_{ij}}.$$

Uwzględniając, że $d_{ij} = d_{ji}$ oraz zależność $\sin(\alpha + \beta) + \sin(\alpha - \beta) = 2\sin\alpha\cos\beta$ wyrazy w podwójnej sumie przyjmą postać:

$$\sin(kd_{ij}+\varphi_j-\varphi_i)+\sin(kd_{ji}+\varphi_i-\varphi_j)=2\sin kd_{ij}\cos(\varphi_j-\varphi_i).$$

Ostatecznie więc całkowita moc akustyczna promieniowana przez **układ** *n* **koherentnych** źródeł punktowych jest równa:

(21)
$$W = \sum_{i=1}^{n} W_{oi} + 2\sum_{i< j}^{n} \sqrt{W_{oi}W_{oj}} \frac{\sin kd_{ij}}{kd_{ij}} \cos(\varphi_{j} - \varphi_{i}),$$

gdzie d_{ij} odległością między *i*-tym a *j*-tym źródłem, *k* liczbą falową, φ_i fazą początkową z jaką promieniuje *i*-te źródło.

<u>Uwagi:</u>

- 1. Pierwsza suma we wzorze (21) jest sumą mocy źródeł pracujących oddzielnie, natomiast druga suma jest sumą mocy akustycznej promieniowanej przez układ w wyniku wzajemnego oddziaływania (interferencji) źródeł.
- 2. Wpływ wzajemnego oddziaływania źródeł na całkowitą moc akustyczną promieniowaną przez układ tych źródeł jest istotny tylko dla małych odległości między źródłami d_{ij} w stosunku do długości fali λ , tj. w polu bliskim źródeł.
- 3. Dla dużych wartości $kd_{ij} \rightarrow \infty$ druga suma we wzorze (21) dąży do zera i całkowita moc akustyczna układu jest sumą mocy akustycznych źródeł składowych, gdy pracują one oddzielnie.

CZĘŚĆ II. UKŁAD DWÓCH KOHERENTNYCH ŹRÓDEŁ PUNKTOWYCH

Najprostszym układem koherentnych źródeł quasi-punktowych (tj. źródeł punktowych, których współczynnik kierunkowości promieniowania $Q_k \neq 1$) jest układ dwóch otworów w nieskończonej i sztywnej odgrodzie na którą pada płaska fala harmoniczna o długości λ . W wyniku dyfrakcji (ugięcia) fali na krawędziach otworów, otwory te stają się źródłami quasi-punktowymi, promieniującymi w półprzestrzeni swobodnej.

Założenia:

- 1. W przyjętym układzie kartezjańskim, współrzędne położenia otworów (żródeł) 1 i 2 są: (-d/2, 0, z), (+d/2, 0, z), jak na rys. 1.
- 2. Moc akustyczna z jaką promieniuje każdy otwór oddzielnie, tzn. gdy drugi otwór jest zatkany i nie promieniuje, jest W_{o1} i W_{o2} . Moce te są proporcjonalne tylko do powierzchni otworów, a współczynniki kierunkowości promieniowania otworów zależą jedynie od ich kształtu.
- 3. Różnica faz z jakimi promieniują otwory zależy od kąta padania α fali płaskiej na przegrodę i jest równa (por. rys. 1):

$$\varphi_{o} = \varphi_{2} - \varphi_{1} = -kd\sin\alpha$$
.

- 1. Wymiary przegrody są dostatecznie duże w stosunku do długości fali padającej λ i przegroda jest idealnie sztywna.
- 2. Parametrem układu otworów jest stosunek d/λ .

Rys.1. Geometria układu otworów w odgrodzie;

1, 2 - otwory (źródła quasi-punktowe), 3 – przegroda nieskończenie duża w stosunku do długości fali padającej λ i idealnie sztywna, $\vec{r} = (r, \gamma)$ – wektor wodzący, który określa położenie mikrofonu w polu swobodnym, w przyjętym układzie współrzędnych.

1. Moc akustyczna promieniowana przez otwory

Na skutek zjawiska interferencji źródła (otwory) oddziałują między sobą i układ takich źródeł jest układem koherentnym. Moc akustyczna wypromieniowana przez *i*-te źródło składowe układu (otwór), i = 1, 2, ..., n, jest dla n = 2 określona wzorem wg (I. 20) podanym w części I:

(1)
$$\begin{cases} W_1 = W_{o1} + \sqrt{W_{o1}W_{o2}} \frac{\sin(kd + \varphi_o)}{kd}, \\ W_2 = W_{o2} + \sqrt{W_{o1}W_{o2}} \frac{\sin(kd - \varphi_o)}{kd}, \end{cases}$$

gdzie $\varphi_o = \varphi_2 - \varphi_1 = -kd \sin \alpha$, $-\pi/2 < \alpha < \pi/2$, jest różnicą faz z jakimi promieniują otwory (por. rys. 1).

Całkowita moc akustyczna promieniowana przez układ dwóch otworów wynosi wg (I. 21):

(2)
$$W = W_1 + W_2 = W_{o1} + W_{o2} + 2\sqrt{W_{o1}W_{o2}} \frac{\sin kd}{kd} \cos \varphi_o.$$

Wykorzystując we wzorze (1) zależność trygonometryczną:

$$\sin(\alpha\pm\beta)=\sin\alpha\cos\beta\pm\cos\alpha\sin\beta,$$

dla <u> $kd = m\pi$ </u>, czyli dla **parametru układu** <u> $d/\lambda = m/2$ </u>, $m = 1, 2, ..., i \quad \varphi_o = -kd \sin \alpha$, otrzymamy:

$$\sin(kd \pm \varphi_o) = \sin m\pi \cos(-m\pi \sin \alpha) \pm \cos m\pi \sin(-m\pi \sin \alpha) =$$
$$= \begin{cases} +\sin(m\pi \sin \alpha), & m = 1, 3, \dots \\ -\sin(m\pi \sin \alpha), & m = 2, 4, \dots \end{cases}$$

Oznaczając dalej

$$A = \frac{W_{01}}{W_{02}} > 0$$

wzory (1) i (2) można zapisać w postaci:

(3)
$$\begin{cases} W_{1} = W_{02} \left(A \pm \sqrt{A} \frac{\sin(m\pi \sin \alpha)}{m\pi} \right), \\ W_{2} = W_{02} \left(1 \mp \sqrt{A} \frac{\sin(m\pi \sin \alpha)}{m\pi} \right), \\ W = W_{1} + W_{2} = W_{o2} (1 + A), \end{cases}$$

gdzie m = 1, 2, 3,..., przy czym znak plus (+) we wzorze (3) odnosi się dla m nieparzystych, natomiast znak minus (-) dla m parzystych.

2. Charakterystyka kierunkowości promieniowania otworów

W dowolnym punkcie pola określonym przez wektor wodzący $\vec{r} = (r, \gamma)$, ciśnienie akustyczne jest sumą ciśnień akustycznych promieniowanych przez układ *n* źródeł quasipunktowych:

$$p(\vec{r},t) = \sum_{i=1}^{n} p_i(\vec{r},t).$$

Korzystając z definicji wartości skutecznej oraz zależności:

$$\left(\sum_{i=1}^{n} x_{i}\right)^{2} = \sum_{i=1}^{n} x_{i}^{2} + 2\sum_{i< j}^{n} x_{i} x_{j},$$

wartość skuteczna sumy ciśnień akustycznych w punkcie $\vec{r} = (r, \gamma)$ pola jest równa:

(4)
$$p_{rms}^{2}(\vec{r},t) = \lim_{T \to \infty} \frac{1}{T} \int_{o}^{T} p^{2}(\vec{r},t) dt = \sum_{i=1}^{n} p_{i,rms}^{2}(\vec{r}) + 2 \sum_{i< j}^{n} \lim_{T \to \infty} \frac{1}{T} \int_{o}^{T} p_{i}(\vec{r},t) p_{j}(\vec{r},t) dt$$

Jeżeli przebiegi składowe $p_i(\vec{r},t)$ są przebiegami sinusoidalnymi o tej samej częstości $\omega = 2\pi f$

$$p_i(\vec{r},t) = A_i \cos(\omega t + \varphi_i + kr_i),$$

przy czym φ_i jest fazą początkową z jaką promieniuje *i*-te źródło, r_i jest odległością punktu $\vec{r} = (r, \gamma)$ od *i*-tego źródła, wówczas

(5)
$$p_{rms}^{2}(\vec{r}) = \sum_{i=1}^{n} p_{i,rms}^{2}(\vec{r}) + 2\sum_{i$$

Korzystając z zależności między wartością skuteczną ciśnienia akustycznego jakie promieniuje źródło quasi-punktowe o mocy akustycznej W_i i współczynniku kierunkowości promieniowania $Q_{k,i}(\gamma)$ (por. wzór (16) w części I)

(6)
$$p_{i,rms}^2(\vec{r}) = Z_o \frac{W_i Q_{k,i}(\gamma)}{4\pi r_i^2},$$

po podstawieniu do wzoru (5), otrzymamy dla dwóch źródeł (otworów), n = 2:

(7)
$$p_{rms}^{2}(\vec{r}) = \frac{Z_{o}}{4\pi} \left(\sum_{i=1}^{2} \frac{W_{i}Q_{k,i}(\gamma)}{r_{i}^{2}} + 2 \frac{\sqrt{W_{1}W_{2}Q_{k,1}(\gamma)Q_{k,2}(\gamma)}}{r_{1}r_{2}} \cos(\varphi_{0} + k(r_{1} - r_{2})) \right),$$

gdzie Z_o jest impedancją ośrodka, $k = \omega c$ liczbą falową, c prędkość dźwięku w ośrodku.

W celu wyznaczenia charakterystyki kierunkowości promieniowania układu otworów zakładamy, że odległość punktu $\vec{r} = (r, \gamma)$ od środka geometrycznego układu jest na tyle duża, że można przyjąć następujące przybliżenia (por. rys. 1 w części II):

$$\begin{cases} r_1 \approx r_2 \approx r, \\ \Delta r = r_1 - r_2 \approx d \sin \gamma. \end{cases}$$

Przybliżenie to jest tym lepsze im większa jest wartość r.

Ponadto zakładamy, że kształty otworów są jednakowe, tzn., że ich współczynniki kierunkowości promieniowania $Q_{k,i}(\gamma) = Q_k(\gamma)$ we wzorze (7) są takie same. Wówczas, po podstawieniu wzoru (3) do wzoru (7), wartość skuteczna sumy ciśnień akustycznych w punkcie $\vec{r} = (r, \gamma)$ jest równa:

(0)

$$p_{rms}^{2}(\vec{r}) = Z_{o} \frac{Q_{k}(\gamma)}{4\pi r^{2}} \left[W_{1} + W_{2} + 2\sqrt{W_{1}W_{2}} \cos(m\pi(-\sin\alpha + \sin\gamma)) \right] =$$
$$= Z_{o} \frac{W_{o2}Q_{k}(\gamma)}{4\pi r^{2}} \left[1 + A + 2\sqrt{\left(A \pm \sqrt{A} \frac{\sin(m\pi\sin\alpha)}{m\pi}\right) \left(1 \mp \sqrt{A} \frac{\sin(m\pi\sin\alpha)}{m\pi}\right)} \cos(m\pi(-\sin\alpha + \sin\gamma)) \right]$$

Dla otworów o współczynnikach kierunkowości $Q_{k,i}(\gamma) = 1$, i jednakowych powierzchniach, czyli dla A = 1 ($W_{o1} = W_{o2} = W_o$), zależność (8) przyjmie postać:

$$p_{rms}^{2}(\vec{r}) = Z_{o} \frac{W_{o}}{4\pi r^{2}} 2 \left(1 + \sqrt{1 - \left(\frac{\sin(m\pi\sin\alpha)}{m\pi}\right)^{2}} \cos(m\pi(-\sin\alpha + \sin\gamma)) \right),$$

a poziom wartość skuteczna sumy ciśnień akustycznych w punkcie $\vec{r} = (r, \gamma)$ jest równy:

(9)
$$L(\vec{r}) = 10 \lg \left(\frac{p_{rms}(\vec{r})}{p_o(\vec{r})}\right)^2 = 10 \lg \frac{1}{2} \left(1 + \sqrt{1 - \left(\frac{\sin(m\pi \sin \alpha)}{m\pi}\right)^2} \cos(m\pi(-\sin\alpha + \sin\gamma))\right), dB$$

gdzie $m = 2d/\lambda = 1, 2, ...,$ natomiast $p_o(\vec{r})$ jest wartością odniesienia w punkcie $\vec{r} = (r,0)$ dla $\alpha = \gamma = 0$ i A = 1, która wynosi

$$p_o^2(\vec{r}) = Z_o \frac{4W_o}{4\pi r^2}.$$

<u>Uwagi:</u>

- 1. Należy zauważyć, że dla ustalonego kd = $m\pi$, czyli dla ustalonego parametru układu $d/\lambda = m/2$, $m = 1, 2,..., poziom L(\vec{r}) wg$ (9), tj. poziom wartości skutecznej sumy ciśnień akustycznych w punkcie $\vec{r} = (r, \gamma)$, <u>zależy jedynie od geometrii układu</u>, tj. od kątów α i γ , czyli od różnicy faz ciśnień akustycznych w punkcie $\vec{r} = (r, \gamma)$.
- 2. Dla źródeł punktowych o tej samej mocy akustycznej, tj. dla A = 1 i $Q_{k,i}(\gamma) = 1$, poziom wartości skutecznej $L(\vec{r})$ wg (9) <u>nie zależy od mocy akustycznej źródeł</u> (czyli od powierzchni otworów).

Zadanie laboratoryjne 1

1. Zmierzyć przebieg $L(\vec{r})$ wg (9) w funkcji kąta γ dla kąta padania fali na przegrodę $\alpha =$ parametr, $-60 \le \alpha \le 60^{\circ}$ i dla parametru układu $\frac{d}{\lambda}$ wg tabeli:

m	1	2	3	4
$kd = m\pi$	π	2π	3π	4π
d/λ	1/2	1	3/2	2
f(Hz)				

- 2. Porównać zmierzone przebiegi z wartościami obliczonymi $L(\vec{r})$ wg (9).
- 3. Dokonać analizy symetrii przebiegów $L(\vec{r})$ wg (9) względem kątów α i γ w przedziale (- $\pi/2$, $\pi/2$).

Zadanie laboratoryjne 2

- 1. Dla podanych wartości parametru struktury d/λ (patrz tabela) wyznaczyć kąty padania α fali płaskiej na przegrodę, dla których układ dwóch jednakowych otworów jest dipolem akustycznym.
- 2. Zmierzyć charakterystyki kierunkowości promieniowania dipola akustycznego dla podanych wartości parametru struktury d/λ i wyznaczonych wartości kąta padania α fali płaskiej na przegrodę.
- 3. Porównać zmierzone charakterystyki z charakterystykami obliczonymi według wyprowadzonej zależności poziomu wartości skutecznej ciśnienia akustycznego w funkcji γ dla dipola akustycznego.
- 4. Jaki kształt będą miały charakterystyki kierunkowości promieniowania, jeżeli $\alpha = 0$.